IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002 499

Classification of Multispectral Images Based the noise sensitivity fault of fuzzy-means and the simultaneous
on a Fuzzy-Possibilistic Neural Network clustering problem of possibilisticmeans strategy with membership
and typicality.
Jzau-Sheng Lin and Shao-Han Liu Applications of neural-network-based approaches to pattern classi-

fication have been extensively studied in the last couple of decades. In

Abstract_in this paper. a new Hopfield-model net based on fuzzy possi the application of multispectral image classification, neural networks
bilistic reasoning is proposed for the classification of multispectral images. exploit the massive parallelism of.neurons. QZE&HI' (6] prpp0§ed a
The main purpose is to modify the Hopfield network embedded with fuzzy neural network-based segmentation of multi-modal medical image. To
possibilistic C-means (FPCM) method to construct a classification system update the performance, fuzzy reasoning algorithms have been added
named fuzzy-possibilistic Hopfield net (FPHN). The classification systemis into neural network to construct fuzzy-neural systems [7], [8], [16].
a paradigm for the implementation of fuzzy logic systems in neural network Kansteiret al.[20] embedded the possibilistic reasoning into a compet-

architecture. Instead of one state in a neuron for the conventional Hop- itive | . twork to clusteri bl Lenal 171 18 ted
field nets, each neuron occupies 2 states called membership state and lyp—' ive learning network to clustering problem. Lenal.[7], [8] presente

icality state in the proposed FPHN. The proposed network not only solves & penalized fuzzy competitive learning network and a fuzzy Hopfield
the noise sensitivity fault of FuzzyC-means (FCM) but also overcomes the neural network (FHNN) to three-band and five-channel magnetic res-
simultaneous clustering problem of possibilisticC-means (PCM) strategy. ~ gnance image classification respectively. Lin [16] also embedded the
In addition to the same characteristics as the FPCM algorithm, the simple compensated fuzzymeans into Hopfield net and applied to clustering.

features of this network are clear potential in optimal problem. The exper- .
imental results show that the proposed FPHN can obtain better solutions These networks proved that better segmentation results are offered than

in the classification of multispectral images. those from a single modality. We extended the author’'s method in [7],
Index Terms—Fuzzy-possibilistic c-means, Hopfield neural network, (8] to multi-band image S.,egmen.tatlon. In FHNN On_ly_ I for a
multispectral images, possibilisticc-means. neuron called membership state is used. When a training sample is clas-

sified as a proper class, membership may be a better candidate, as it is
natural to assign a sample to that class whose representative vector is
I. INTRODUCTION closest to the sample. On the other hand, when estimating cluster cen-

Multispectral classification has been described as generatiﬁ'ﬁs’ typicality_is an impor_t_ant constraint for alleyiating the undesirable
better discrimination than single spectral classification [1]. In thgleCts of outliers. In addition to the membership state in a neuron, we
remotely sensed images, the multispectral images are extracted fHf TPt to add other neuron state named typicality state to alleviate the
multiple-band sensors operated from either a spaceborne or an léﬂ(_jeswable effects of outliers. In this paper, the FPCM is added into
borne platform such as Landsat seven-band Thematic Mapper (TM pfield network to construct the FPHN for classification of multi-
four-band Multispectral Scanner (MSS), and three-band satellf ectral images. This approach has two advantages, namely it is more

Pour 1'Observation de la Terra (SPOT). In the other words, magnert?(puSt to noise and it is an unsu_perwsed_ _al_go_rlthm based ona neural
resonance imaging (MRI) systems can produce multi-band ima twork. In order to solve the noise sensitivity in fuzzy reasoning and

each of which emphasizes a different fundamental parameter ne simultaneous clustering problem of possibilistic learning in a neural

. . . . . . network, the FPCM strategy is embedded into Hopfield network to con-
internal anatomical structures in the same body section with multipl . : - : : :

" . . . . struct the FPHN which can obtain more promising solutions in multi-
contrasts, based on local variations of spin-lattice relaxation time

(T}), spin-spin relaxation timéT3), and proton density (PD). The specral image classification than HCM and FHNN as shown in exper-

e . . imental results.
classification of multispectral images has been successfully employed‘?he rest of this paper is organized as follows. Section Il reviews

in the past [.1]_[8]' The qnalysis of .SUCh multidimens!onal imagg; e fuzzy cluster techniques including fuzzymeans, possibilistic
be accomplished by using supervised or unsupervised Class'f'cati-g%eans, and fuzzy-possibilistic-means. Section 1l presents the

methods. In supervised classification strategies, the region of interﬁfﬁzy possibilistic Hopfield network (FPHN). Section IV shows sev-
(RQI) Is defined by the associated hPma_“ interaction and the_appro%j; | experimental results, and finally, Section V gives the discussion
trains on the ROI and flags each pixel in the scenes associated V\é{ﬂb conclusions

a given signature. However, a supervised approach is very time-con-
suming for large volumes and heavy biases may be introduced by an

unskilled technician. The unsupervised classification methods classify Il. Fuzzy CLUSTERING TECHNIQUES
the multidimensional data sets without the aid of training sets, but a ] o ) )
post-processing step is required to correct misclassified pixels. Clustering has been an indispensable paradigm to unsupervised pat-

Generally speaking, unsupervised classification approaches st recognition. Uncertainty is largely present in multispectral images,
as hardC-means (HCM) [9] and ISODATA [10] are traditional because of the noise in acquisition and of the partial volume effects.
clustering methods in which each sample belongs only to one clustBis means that the pixel vectors, especially at the borders between

FCM [10]-[13], penalized FCM (PFCM) [14], [15] and compensatea()l”mes of interest, correspond to mixtures of different regions, be-

FCM (CFCM) [16] are called fuzzy clustering methods in which ever§2use of the low resolution of sensors. As a consequence, borders be-
een regions are not exactly defined and memberships in boundary

sample belongs to all clusters with different degrees of membershig.” S . .
In possibilistic clustering algorithm [17], [18] every sample belon tegions are really fuzzy. In the application of mutispectral image clas-

to all clusters with different degrees of possibility. FPCM [19] solvegiﬁcaﬂon’ the clustering process based on fuzzy reasoning strategy is
widely used. The clustering-based approaches have been shown to be

more suitable to noisy images in discrimination of different regions in
Manuscript received August 7, 2000; revised March 26, 2001, August 3wltispectral medical images than techniques based on edge detection

2001, and April 21, 2002. . . ~ [21]. In [22], a unified view of robust clustering including fuzzy and
The authors are with the Department of Electronic Engineering, Natugsx

Chin-Yi Institute of Technology, Taichung, Taiwan, R.O.C (e-mail: jslin bSSIb'“StIC Clus.terlng app.roaches were glv_en. . .
chinyi.ncit.edu.tw). Fuzzy clustering strategies are mathematical tools for detecting sim-
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the FCM approach is to group data into clusters of similar items by min-
imizing a least squared error measure. &or 2 andm > 1, the algo-
rithm chooseg:, : Z — [0,1] sothat) pu, = 1fori=1,2,...,¢

to minimize the objective function

n
1 n c . N wa,i;y,i(ﬂ,;":i +t;’7,i)
Jrom = 3 Z Z (i) |22 — wi| 1) y=1

r=1 =1

wherey,. ; is the value of the ith membership grade on tie sample
z.. The cluster centers1, ..., w;, ..., w. can be regarded as proto-
types for the clusters represented by the membership grades. The valgel.  Architecture of the neurafx, 7) in a 2-D FPHN.
m € [1, oc] is the fuzzification parameter (or exponential weight).
FCM algorithms use the probabilistic constraint to make the mem- L . . .
berships of a training sample with the different grades shared by disti:g#he FPCM, membershyp. , is a function of training sample. with

clusters. In contrast, each component generated by the PCM, proposed CII;,stn\j\:itEeQLesrtse:VcTri;;e t_)ll_ﬁfiwlééit; fuvn(;:ct)lgg_g;t;a;nglr? d
by Krishnapuramet al. [17], [18] for unsupervised clustering, corre- plee. yp o J P

sponds to a dense region in the data set with a degree of typicality.olrpwthe location of the cluster center;.

the PCM, the membership function of a point in a fuzzy set is absolute,
not depending on the membership value of the same pointin other clus-
ters and each cluster is independent of the other clusters. The objectivehe Hopfield-model neural networks [23], [24] have been studied
function of the PCM can be formulated as extensively. The features of this network are simple and have clear
potential for parallel implementation. In order to improve the perfor-
1 o= , . A mance in the application of optimal problems, modified Hopfield net-
Toon =53 > (tea)lze =il + 383 (1=t \works [7], [8], [16], [25]-[27] have been proposed. Lénal. [7], [8],
et v=tooe=t 2 [16], [26] proposed different fuzzy Hopfield networks to the applica-
) tions of clustering problem and medical image segmentation. Céteng
al. [27] presented a possibilistic Hopfield network on CT brain hem-
wherej; is the scale parameter at tih clustert.. ; is the possibilistic orrhage image segmentation. These modified Hopfield networks are
typicality value of training sample, associated with the clustgrand either based on fuzzy reasoning or possibilistic learning. In [7], [8],
n € [1, 00), is aweighting factor called the possibilistic parameter. Thid 6], [26], and [27], each neuron occupies only one state which is
possibilistic approach processes the membership value of a trainifglated with a membership grade or typicality degree. For the pur-
sample in a cluster representing the typicality of the sample in these of solving the noise sensitivity fault of fuzzy reasoning and the
cluster, or the possibility of the sample belonging to the cluster. Eaglimultaneous clustering problem of possibilistic learning, the FPCM
training sample is classified to only one cluster at a time rather thandpategy is embedded into Hopfield network to construct the FPHN in
all the clusters simultaneously. Therefore, a reasonable initializationtligs paper. Instead of updating and memorizing the centroids for iter-
required in order to lef-cv converge to the global minimum. atively training samples in the FPCM, the neuron states and synaptic
If a training sample is classified to a suitable cluster, membershigights are updated in the modified Hofield net. Finally, the centroids
is a better constraint for which the training sample is the closest 4e calculated using the training samples and neuron states when the
this cluster. In the other words, typicality is an important factor fognergy is converged. In the FPHN, shown in Fig. 1, each neuron occu-
unburdening the undesirable effects of outliers to compute the clustegs two states named membership state based orchister centers
centers. In accordance with [19], typicality is related to the mode ahd typicality state based on alltraining samples individually. In the
the cluster and can be calculated based on &thining samples. Thus |earning process, the membership and typicality states are updated iter-
an objective function in the FPCM, depending on both of membershiggvely until the modified energy is converged. Thus the total weighed
and typicalities, can be defined as input for neuron(x, i) and Lyapunov energy function in the two-di-
mensional FPHN can be modified as

Ill. Fuzzy-PossiBILISTIC HOPFIELD NEURAL NETWORK

1 - . m 7 p
Jrpom = B Z Z (i + 0 )z — @i||? ®3)

i 2
e=1i=1 Nety ; = |2, — Zw.l',i;y,izy +L:+K.; (7
y=1
where memberships, typicalities, and centroids are and
T (& n 2
— 1 m n . .
© (flz = @)Y\ E=3 ZZ (it t2) 2 ZW
e = . L ;o r=1,2,...,n e=1e= v=
a ; (”ZT _z"_—/f||d))l/(m71) ' n c
- L, il
i=L2....c (4 =202 Lo + Kot ) (8)
1 r=1 =1
" (e — i ]12) 1/ =)
tni = Z(”” l”) - o y=12.....n . . . .
’ < (|lzy — @;]|2)L/ (=1 whereW.. ;.,; is the weighed input vector received from the neuron
u=

(y,7) at neuron(z,i), m andn are fuzzification and typicality
parametersy..; andt.; are membership and typicality states at

and . neuron(z,i), andI, ;, K, ; are input-vector biases for membership
o = 1 Z (#m, Iy ) . (6) and typicality states at neurdm:,¢) respectively. The minimization
(et ) = T of (8) is under the constraints: > 1,7 > 1,0 < p, . te; < 1,

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 09:30 from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002 501

and) ;_, pe,i = 1Va;and) " t.; = 1 Vi. The network reaches
an equilibrium state when the modified Lyapunov energy function
minimized. The objective function for clustering problem in the 2-[
FPHN is defined as follows:

START

Set fuzzification parameter m, typicalty parameter 7, and threshold values
gand Arespectively. Initialize cluster centers to random vectors. Set iter=0.

v

JrpaN = % Z Z (/1«71”1 + fﬁ,;) Randomly initialize the states for all neurons U =[]
r=11=1 ) (membership) and T =[t,,](typicality) individually.
n
x|ze =) = 1 Ty 2 (1 + 1) ; >y - :
v=1 Z h=1 (:”’h,i + fh,i) Calculate the weighted vector matrix W =[W, ;. ;] using Eq.
" e 2 (11) and the input to each neuron using Eq. (14). iter=iter+1.
+ g { > Z(,fo,i +tei)| —n— C} 9 v
e=1=1 Apply Egs. (15) and (16) to update the neuron’s membership
and typicality values in a synchronized manner.
where.Jypun is the objective function that accounts for the energie 7
of all training samples in the same class, andz, are the training
vectors at rows: andy in the FPHN, respectively. A,, = max[| U — e |1 and. A, = max[| 7@ — T ||
The first term in (9) defines the Euclidean distance between tl 3y
training samples in a cluster and that cluster’s centers owdus-
ters with membership grade and typicality degree. The second te
iter>loop?

guarantees that training samples irZ are distributed among these A, <&andA <427
¢ clusters. More specifically, the second term (the constrained terr
imposes constraints on the objective function, and the first term mi
imizes the intra-class Euclidean distance from training vectors to t
cluster centers.

All the neurons in the same row compete with one another to det:
mine the training sample represented by that row belongs to all clt
ters with membership grades and typicality degrees. In other words,
summation of the membership states in the same row equalsto one _..._.
the summation of the typicality states in the same column also equals
to one in the FPHN. That is, the total sum of membership states in oy 2
n rows equal: and the total sum of typicality states in alcolumns

equalc. This assures that all samples will be classified intoclasses. Consequently, the neuron states at neurani) in the FPHN with
The objective function in this network can be further simplified as  zpcpy reasoniné are given by '

Labeling all pixels in multispectral
images to suitable clusters.

Flowchart of multispectral images classification using the FPHN.

B 1 n c . c Nt‘tx,,‘ 1/m—1 -1 '
JFPHN = 5 Z Z (ﬂ.l',i + le) Hai = |:Z <Netm’j> :| ) for a” (4 (15)

T e=1i=1 j=1

7”'+tn ) 2 and

Y.t

(e
X |2z — Z 7 7 m 7 Zy| - (10) n T N\ I/n—1 -1
y=1 She (w17 ) tei [Z (.\etw> ] , forallx. (16)
—1

o Net, ;

By using (10), the minimization ofpun is greatly simplified, since . . .
(10) contains only one term, the need to find the weighting factors . Directly mapping training vectors to the 2-D neuron array, the FPHN

andB are removed. Comparing (10) with the modified Lyapunovfund-s trained to update all neuron states in order to classify the input vec-

tion (8), the synaptic interconnection weights and the bias inputs for tﬁ)és into flez;snble_ c!usters%/}/qheg tthe_l defined enfetrk?y LU;SRIOD cc;]nverg_es
proposed FPHN can be obtained as 0 near global minimum. The detail process of the is shown in

Fig. 2, in which parameteiiger andmaxiare number of iterations and
maximum value of iteration respectively.

m,i + tn ;
Wiy, = n(ﬂy, pr— )n (11)
et (g 1) IV. EXPERIMENTAL RESULTS
L.=0 12) To show the classification performance of the FPHN, a data set
and proposed by Padt al.[19] and two sets of al multispectral images are
K, . =0. (13) used for simulation in an IBM Pentium 1l 166 MHz computer. The

data set, shown in Fig. 3, consists of 12 points on a 2-D coordinate
given in Table I. Initially, the states of neurons.; andt. ; are
By introducing (11), (12), and (13) into (7), the input of neuteni)  randomly set between 0 and 1. These two states for all neurons are

can be expressed as updated iteratively to stabilize solutions as the defined Lyapunov
energy function converges to a near-global minimum value. The
" 2 cluster centers associated the data set shown in Table kwitB are
Net,. = |z, — Z _ 1 —z, (1) (4 C; = [C11.Cha] = [(—3.1947,0.3138), (3.1946, 0.3134)],C, =
=k (s 1) ’ [Cor,Caa] = [(—3.2080,0.3053), (3.2078,0.3051)], and C; =
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Fig. 3. Coordinates of the data set.

TABLE |
MEMBERSHIPGRADES AND TYPICALITY DEGREES FORFCM AND FPHN

Data set

FCM

m=3

FHNN
m=3

FPHN
m=3, n=3

®

pl

p2

Hx,l Hx2

Hx,1

Hyx2

Hx 1

Hx2

13 x,1

t x,2

-5.00

0.00

0.9524 | 0.0476

0.9465

0.0535

0.9538

0.0462

0.0227

0.0012

-3.34

1.67

0.9599 | 0.0401

0.9534

0.0466

0.9572

0.0438

0.0368

0.0015

-3.34

0.00

0.9972 | 0.0028

0.9966

0.0034

0.9976

0.0024

0.8664

0.0016

-3.34

-1.67

0.9218 | 0.0782

0.9138

0.0862

0.9249

0.0751

0.0178

0.0014

-1.67

0.00

0.9075 | 0.0925

0.8971

0.1029

0.9060

0.0940

0.0287

0.0031

0.0

0.00

0.5000 | 0.5000

0.5000

0.5000

0.5001

0.4999

0.0067

0.0067

1.67

0.00

0.0925 | 0.9075

0.1029

0.8971

0.0927

0.9073

0.0028

0.0301

3.34

1.67

0.0401 | 0.9599

0.0466

0.9534

0.0415

0.9585

0.0015

0.0385

O oo Q| N | B W N =

3.34

0.00

0.0028 | 0.9972

0.0034

0.9966

0.0017

0.9983

0.0016

0.8654

10{3.34

-1.67

0.0782 | 0.9218

0.0861

0.9139

0.0745

0.9255

0.0014

0.0193

11| 5.00

0.00

0.0476 | 0.9524

0.0535

0.9465

0.0456

0.9546

0.0010

0.0210

121 0.00

10.00

0.5000 | 0.5000

0.5000

0.5000

0.4997

0.5003

0.0005

0.0005

Class center

(-3.1947, 0.3138)
(3.1946, 0.3134)

(-3.2080, 0.3053)
(3.2078, 0.3051)

(-3.2045, 0.2702)

(3.2048, 0.2657)

INDICES OF THE12 ROINTS CORRESPONDING TO ASORT ON#, 1 AND %, >

TABLE I
Typicality order
tx,l tx,2

3 9
2 8
5 7
1 11
4 10
6 6
7 5
9 3
8 2
10 4
11 1
12 12

(a) (b)

Fig. 4. Multispectral MR head images with normal physiology: &}/
TE,; = 2500 ms/25ms; (b)TR./TE, = 1500 ms/50 ms; (c)TR;/TE3
500 ms/11.9 ms; (d) TR4/TEs = 2500 ms/75 ms; () TRs/TEs
2500 ms/100 ms.

using FCM areC4 = [C41,C42] = [(—3.2000,0), (3.2001,0)]
if point 12 was removed and clustering the remained 11
points into 2 classes. The Euclidean distances between cen-
troids C, and C;,C»,Cs are diss1 = distance(C4,Cy) =
[0.3138.0.3134], dissz = distance(C4,C2) = [0.3054,0.3052]
and disss = distance(C4,C3) = [0.2702,0.2657] individually.
From these results, the centroids resulted from FPHN are more
weakly influenced by point 12 than FCM and FHNN. Table I
shows the indices of the 12 points sorted by typicality values in
each cluster. Same as the results in the FPCM, points 1-5 are most
typical to cluster 1 and points 7-11 are also most typical to cluster
2. Point 6 has equal typicality values to both clusters. Although
point 12 also occupies equal typicality values to both clusters, it is
an order of magnitude smaller than the typicality value for point 6
that means point 6 belongs to both clusters with proper grades more
strongly than point 12. This also means that the FPHN can prune
outliers from the data to reduce the effects of noise.

The second example is multispectral image classification in MR
head images of a normal physiology shown in Fig. 4. Due to the
noise in acquisition and of the partial volume effects from the low

[C51,Cs2] = [(—3.2045,0.2702), (3.2048,0.2657)] generated by resolution of sensors, the uncertainty is widely present in medical
FCM, FHNN and FPHN respectively. The centroids were obtaingchages. The unsupervised approaches based on fuzzy clustering
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TABLE I
AVERAGE ITERATIONS AND COMPUTATION TIME NEEDED TO CLASSIFY ONE
MR-IMAGE FORHCM, FHNN AND THE PROPOSEDFPHN

HCM FHNN FPHN
iterations 12 26 15
Computation 16 31 22
Time (sec.)
TABLE IV

UNIFORMITY MEASURES INVARIANT CHANNELS USING THE DIFFERENT
METHODS FORFIG. 4

Channels
Methods CH1 CH2 CH3 CH4 CHS | Average
4 regions | 0.9868 | 0.9873 | 0.9875 | 0.9875 | 0.9863 | 0.9870
HCM | 5regions | 0.9882 | 0.9869 | 0.9877 | 0.9885 | 0.9878 | 0.9878
4 regions | 0.9946 | 0.9964 | 0.9977 | 0.9974 | 0.9959 | 0.9964
FHNN| 5regions | 0.9977 | 0.9972 | 0.9977 | 0.9969 | 0.9966 | 0.9972
4 regions | 0.9953 | 0.9968 | 0.9979 | 0.9976 | 0.9965 | 0.9968
FPHN| Sregions | 0.9978 | 0.9973 | 0.9977 | 0.9969 | 0.9965 | 0.9972

the other hand, the FHNN requires more iterations and computation
time than the proposed FPHN although the mathematic structure of
FPHN is more complex.

The uniformity measure adopted from Levine and Nazif [28] is used
to show the classification performance for the classified regions com-
pared the proposed FPHN with HCM and FHNN in this paper. In digital
images, the uniformity of a feature over a region is inversely propor-
tional to the variance of the value of that feature evaluated at every pixel
belonging to that region. For a given-segmented image, the uniformity
measurd/M,, is given by

pio?
UM, =1- (&%) a7

whereR; is the segmented regian P; is the weight associated with

Fig. 5. Classified images in channel 5 wiffRs /TE; = 2500 ms/100 ms:  the contribution of regio®; to the measure. The value is computed as
pictures (a) GM, (c) WM, and (e) CSF are classified by FPHN; (b) GM, (d) WM,

and (f) CSF are classified using FHNN, respectively. .

AT — . (fmax _fmin)2

M= p e (18)
techniques are particularly suitable for handling a decision making RiCa
process in classification of multi-modal medical images. These real
medical images in Figs. 4 and 9 are acquired withweighted With fi.. = maximum gray level angl.;, = minimum gray level in
sequences for channel imagé# = 1,2, 4, and5 and7;-weighted the image respectively. H; is the total number of pixels in regiaR;
signal for channel imag€’H = 3 respectively. The acquisition for classi, the variance for gray levels iR; is defined as
parameters with different repetition time (TR) and echo time (TE)
are TR /TE; = 2500ms/25 ms, TR,/TE;, = 1500 ms/50 [f(a,y) — fi]?
ms, TRs/TE; = 500 ms/11.9 ms, TRs/TE; = 2500 ms/75 o= ) (19)
ms, and TRs/TEs; = 2500ms/100 ms for Fig. 4; and (x.)€R;

TR,/TE; = 2500ms/25 ms, TR,/TE, = 2500 ms/50 ms, ; ) oo
TRs/TE; = 500 ms/20 ms, TR4/TE, = 2500 ms/75 ms, and where f(z, y) represeqts the gray Ievg! of.plx(at,y), fils thg av-
TRs/TE; = 2500 ms/100 ms for Fig. 9 individually. Therefore, a €rage gray level in regioR;. The classification performance is more
training vector consisting of 5 components is directly fed into a roRfoMising as the uniformity measure is closer to 1 for a segmented
of the FPHN. image. Although Fig. 5 almost displays the similar classified results
In Fig. 5, different regions were classified by the FPHN and FHNK subjective observation, the uniformity measures shown in Table IV
from Fig. 4 such as background (BKG), gray matter (GM), white mattédicates more promising results can be obtained by the FPHN. From
(WM), and cerebral spinal fluid (CSF), respectively. The classified tifables Ill and IV, the FPHN can obtain more uniform classification
sues generated by FPHN and FHNN are shown in Fig. 5. In ordésan the HCM algorithm and obtain better performance than FHNN.
to compare the performance of the proposed FPHN with HCM ardlditionally, the better uniformity measure can be obtained with more
FHNN, the computation time and number of iterations needed to clasgions than those yielded by fewer regions.
sify one MR-image using the interpreter language of MATLAB are dis- In order to emphasize the classification ability of the proposed
played in Table Ill. In the results, the HCM needs less iterations afPHN, several test phantoms were constructed for simulation. Every
computation time than the other two fuzzy approaches in average. t8st phantom was made up of six overlapping ellipses. Each ellipse
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TABLE V
SIMULATING CLUSTER CENTERS OFDIFFERENT OBJECTS FORVARIANT
CHANNELS IN TEST PHANTONS WHICH ARE THE AVERAGE VALUES
ESTIMATED FROM TEN MULTISPECTRAL MR HEAD IMAGES WITH NORMAL
PHYSIOLOGY USING THE SAME PARAMETERS INFIG. 4

~~Channels

Objects CH1 CH?2 CH3 CH4 CH5
BKG 0 0 0 0 0
GM 192 183 91 152 108
WM 166 159 103 108 75
CSF 203 248 68 220 199

(@ (®
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(@

Fig. 7. Test phantoms for simulating different objects (BKG, WM, GM, and

(e)

CSF) in multispectal image with adding Gaussian néise +30.

TABLE VI
SEGMENTATION PERFORMANCES INCORRECTDETECTING PIXELS FOR FHNN
AND FPHN METHODSUSING THE SIMULATED IMAGE WITH 6 = 425

Simulation object Actual pixels FHNN FPHN
Background(BKG) 41500 41500(100%) 41500(100%)
GM 10270 9647(93.9%) 9615(93.6%)
WM 10116 9372(92.6%) 9422(93.1%)
CSF 3650 3650(100%) 3650(100%)
Misclassified pixels 0 1367 1349
Average correct ratio 96.6% 96.7%

Fig. 6. Test phantoms for simulating different objects (BKG, WM, GM, and

CSF) in multispectal image.

represents one structural area of tissue. From periphery to the certar

they were the background (BKG, 41500 pixels), gray matter (GM
10270 pixels), white matter (WM, 10116 pixels), and cerebrospin
fluid (CSF, 3650 pixels), respectively. The cluster centers for differel
channels in test phantoms, in Table V, are the average values estim:
from ten sets of multispectral MR head images with normal phys

TABLE VII
SEGMENTATION PERFORMANCES INCORRECTDETECTING PIXELS FOR FHNN
AND FPHN METHODSUSING THE SIMULATED IMAGE WITH 6 = £30

ology using the same parameters in Fig. 4. The computer-genera
images to simulate variant channels are shown in Fig. 6. In additic
a Gaussian-distribution noise with gray levels ranging frefito 46
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Simulation object Actual pixels FHNN FPHN
Background(BKG) 41500 41500(100%) 41500(100%)
GM 10270 9317(90.7%) 9220(89.8%)
WM 10116 8775(86.7%) 8889(87.9%)
CSF 3650 3646(99.9%) 3646(99.9%)
Misclassified pixels 0 2298 2281
Average correct ratio 94.3% 94.4%
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TABLE VIII
SEGMENTATION PERFORMANCES INCORRECTDETECTING PIXELS FOR FHNN
AND FPHN METHODSUSING THE SIMULATED IMAGE WITH § = %50

Simulation object Actual pixels FHNN FPHN
Background(BKG) 41500 41197(99.3%) 41197(99.3%)
GM 10270 7787(75.8%) 7749(75.5%)
WM 10116 7280(72.0%) 7377(72.9%)
CSF 3650 3527(96.6%) 3513(96.2%)
Misclassified pixels 0 5747 5700
Average correct ratio 85.9% 86.0%

TABLE IX
SEGMENTATION PERFORMANCES INCORRECTDETECTING PIXELS FOR FHNN
AND FPHN METHODSUSING THE SIMULATED IMAGE WITH 6 = £80

Simulation object Actual pixels FHNN FPHN
Background(BKG) 41500 33231(80.1%) 39220(94.5%)
GM 10270 7678(74.8%) 5970(58.1%)
WM 10116 1844(18.2%) 4721(46.7%)
CSF 3650 3289(90.1%) 3147(86.2%)
Misclassified pixels 0 19494 12478
Average correct ratio 65.8% 71.4.0%

(e)

Fig. 8. Classified images with variant Gaussian noises: picturés£a}10,
(c) 6 = £30, and (e)6 = +£80 are classified by FPHN; (b) = 10, (d)

6 = £30, and ()6 = £80 are classified using FHNN respectively.

@ ()

Fig. 9. Multispectral MR head images with cerebral infarction: Td}., /
TE; = 2500 ms/25 ms; (b)TR/TE, = 2500 ms/50 ms; (c)TR3/TE; =
500 ms/20 ms; (d) TR4/TE,s = 2500ms/75 ms; (e) TRs/TE; =
2500 ms/100 ms.

was added to test phantoms. The test phantoms with Gaussian -distribu-
tion noiseS = %30 for different channels are shown in Fig. 7. The clas-
sified results of test phantoms with variant noi§es +25, +30, 50
and=+80 are displayed in Tables VI, VII, VIIl and IX respectively. The
simulated structural areas of tissues can be completely and correctly
classified when the Gaussian noisdds < 10 for both FPHN and
FHNN. In these Tables, the proposed FPHN can obtain more promising
classification than the FHNN. For example, 9372 pixels were detected
with a 92.6% correct rate using FHNN while 9422 pixels were clas-
sified with 93.1% correct rate using the FPHN with= +25. The

total misclassified pixels for the test phantoms with= +25 were

1367 and 1349 using FHNN and the proposed FPHN, respectively. The
better classification rates can be clearly displayed by the FPHN than
those yielded by the FHNN in more noises. The classified regions in
different images for variant noises are shown in Fig. 8.

The fourth example is multispectral images classification in MR
head images of a patient diagnosed with cerebral infarction shown in
Fig. 9. Fig. 10 shows the five regions BKG, GM, WM, CSF, and cere-
bral infarction (Cl) classified by the FPHN respectively. After a post
processing with median filtering, the detail of an abnormal region with
cerebral infarction is displayed in of Fig. 10(e).
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Fig. 10. Classified images using the proposed FPHN in channel 2 with

TR./TE, = 2500 ms/50 ms: (a) GM; (b) WM; (c) CSF; (d) ClI; and (e) CI
after median filter.

V. DiscussiON ANDCONCLUSIONS

(17]
(18]

(19]

A modified Hopfield-net model called fuzzy possibilistic Hopfield [20]

net (FPHN) embedded fuzzy possibilistemeans strategy with 2

neuron states, membership state and typicality state, is proposed
the classification of multispectral images. From the simulations, th

é‘ﬂ]

proposed FPHN seems to solve the noise sensitivity fault of fuzzy
c-means and overcoming the simultaneous clustering problem d£2]

possibilisticc-means strategy. Therefore, the FPHN can prune outlier:

B3]

from the data to reduce the effects of noise. From the experimental
results, the FPHN can classify more suitable regions than HCM and
FHNN methods in the application of multispectral images and thd 24!
generated phantoms classification. Moreover, the designed FPHps)
neural-network-based approach with a fuzzy reasoning has simple

features and clear potential for optimal problems.
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