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Classification of Multispectral Images Based
on a Fuzzy-Possibilistic Neural Network

Jzau-Sheng Lin and Shao-Han Liu

Abstract—In this paper, a new Hopfield-model net based on fuzzy possi-
bilistic reasoning is proposed for the classification of multispectral images.
The main purpose is to modify the Hopfield network embedded with fuzzy
possibilistic -means (FPCM) method to construct a classification system
named fuzzy-possibilistic Hopfield net (FPHN). The classification system is
a paradigm for the implementation of fuzzy logic systems in neural network
architecture. Instead of one state in a neuron for the conventional Hop-
field nets, each neuron occupies 2 states called membership state and typ-
icality state in the proposed FPHN. The proposed network not only solves
the noise sensitivity fault of Fuzzy -means (FCM) but also overcomes the
simultaneous clustering problem of possibilistic -means (PCM) strategy.
In addition to the same characteristics as the FPCM algorithm, the simple
features of this network are clear potential in optimal problem. The exper-
imental results show that the proposed FPHN can obtain better solutions
in the classification of multispectral images.

Index Terms—Fuzzy-possibilistic -means, Hopfield neural network,
multispectral images, possibilistic -means.

I. INTRODUCTION

Multispectral classification has been described as generating
better discrimination than single spectral classification [1]. In the
remotely sensed images, the multispectral images are extracted from
multiple-band sensors operated from either a spaceborne or an air-
borne platform such as Landsat seven-band Thematic Mapper (TM),
four-band Multispectral Scanner (MSS), and three-band Satellite
Pour 1’Observation de la Terra (SPOT). In the other words, magnetic
resonance imaging (MRI) systems can produce multi-band images
each of which emphasizes a different fundamental parameter of
internal anatomical structures in the same body section with multiple
contrasts, based on local variations of spin-lattice relaxation time
(T1), spin–spin relaxation time(T2), and proton density (PD). The
classification of multispectral images has been successfully employed
in the past [1]–[8]. The analysis of such multidimensional images can
be accomplished by using supervised or unsupervised classification
methods. In supervised classification strategies, the region of interest
(ROI) is defined by the associated human interaction and the approach
trains on the ROI and flags each pixel in the scenes associated with
a given signature. However, a supervised approach is very time-con-
suming for large volumes and heavy biases may be introduced by an
unskilled technician. The unsupervised classification methods classify
the multidimensional data sets without the aid of training sets, but a
post-processing step is required to correct misclassified pixels.

Generally speaking, unsupervised classification approaches such
as hardC-means (HCM) [9] and ISODATA [10] are traditional
clustering methods in which each sample belongs only to one cluster.
FCM [10]–[13], penalized FCM (PFCM) [14], [15] and compensated
FCM (CFCM) [16] are called fuzzy clustering methods in which every
sample belongs to all clusters with different degrees of membership.
In possibilistic clustering algorithm [17], [18] every sample belongs
to all clusters with different degrees of possibility. FPCM [19] solves
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the noise sensitivity fault of fuzzyc-means and the simultaneous
clustering problem of possibilisticc-means strategy with membership
and typicality.

Applications of neural-network-based approaches to pattern classi-
fication have been extensively studied in the last couple of decades. In
the application of multispectral image classification, neural networks
exploit the massive parallelism of neurons. Ozkanet al. [6] proposed a
neural network-based segmentation of multi-modal medical image. To
update the performance, fuzzy reasoning algorithms have been added
into neural network to construct fuzzy-neural systems [7], [8], [16].
Kansteinet al.[20] embedded the possibilistic reasoning into a compet-
itive learning network to clustering problem. Linet al.[7], [8] presented
a penalized fuzzy competitive learning network and a fuzzy Hopfield
neural network (FHNN) to three-band and five-channel magnetic res-
onance image classification respectively. Lin [16] also embedded the
compensated fuzzyc-means into Hopfield net and applied to clustering.
These networks proved that better segmentation results are offered than
those from a single modality. We extended the author’s method in [7],
[8] to multi-band image segmentation. In FHNN only one state for a
neuron called membership state is used. When a training sample is clas-
sified as a proper class, membership may be a better candidate, as it is
natural to assign a sample to that class whose representative vector is
closest to the sample. On the other hand, when estimating cluster cen-
ters, typicality is an important constraint for alleviating the undesirable
effects of outliers. In addition to the membership state in a neuron, we
attempt to add other neuron state named typicality state to alleviate the
undesirable effects of outliers. In this paper, the FPCM is added into
Hopfield network to construct the FPHN for classification of multi-
spectral images. This approach has two advantages, namely it is more
robust to noise and it is an unsupervised algorithm based on a neural
network. In order to solve the noise sensitivity in fuzzy reasoning and
the simultaneous clustering problem of possibilistic learning in a neural
network, the FPCM strategy is embedded into Hopfield network to con-
struct the FPHN which can obtain more promising solutions in multi-
specral image classification than HCM and FHNN as shown in exper-
imental results.

The rest of this paper is organized as follows. Section II reviews
the fuzzy cluster techniques including fuzzyc-means, possibilistic
c-means, and fuzzy-possibilisticc-means. Section III presents the
fuzzy possibilistic Hopfield network (FPHN). Section IV shows sev-
eral experimental results, and finally, Section V gives the discussion
and conclusions.

II. FUZZY CLUSTERING TECHNIQUES

Clustering has been an indispensable paradigm to unsupervised pat-
tern recognition. Uncertainty is largely present in multispectral images,
because of the noise in acquisition and of the partial volume effects.
This means that the pixel vectors, especially at the borders between
volumes of interest, correspond to mixtures of different regions, be-
cause of the low resolution of sensors. As a consequence, borders be-
tween regions are not exactly defined and memberships in boundary
regions are really fuzzy. In the application of mutispectral image clas-
sification, the clustering process based on fuzzy reasoning strategy is
widely used. The clustering-based approaches have been shown to be
more suitable to noisy images in discrimination of different regions in
multispectral medical images than techniques based on edge detection
[21]. In [22], a unified view of robust clustering including fuzzy and
possibilistic clustering approaches were given.

Fuzzy clustering strategies are mathematical tools for detecting sim-
ilarities between members of a collection of samples. The purpose of
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the FCM approach is to group data into clusters of similar items by min-
imizing a least squared error measure. Forc � 2 andm > 1, the algo-
rithm chooses�x : Z ! [0; 1] so that x �x = 1 for i = 1; 2; . . . ; c
to minimize the objective function

JFCM =
1

2

n

x=1

c

i=1

(�x;i)
mkzx �$ik

2 (1)

where�x;i is the value of the ith membership grade on thexth sample
zx. The cluster centers$1; . . . ; $j ; . . . ; $c can be regarded as proto-
types for the clusters represented by the membership grades. The value
m 2 [1;1] is the fuzzification parameter (or exponential weight).

FCM algorithms use the probabilistic constraint to make the mem-
berships of a training sample with the different grades shared by distinct
clusters. In contrast, each component generated by the PCM, proposed
by Krishnapuramet al. [17], [18] for unsupervised clustering, corre-
sponds to a dense region in the data set with a degree of typicality. In
the PCM, the membership function of a point in a fuzzy set is absolute,
not depending on the membership value of the same point in other clus-
ters and each cluster is independent of the other clusters. The objective
function of the PCM can be formulated as

JPCM =
1

2

n

x=1

c

i=1

(tx;i)
�kzx �$ik

2 +

n

x=1

�i

c

i=1

(1� tx;i)
�

(2)

where�i is the scale parameter at theith cluster,tx;i is the possibilistic
typicality value of training samplezx associated with the clusteri, and
� 2 [1;1), is a weighting factor called the possibilistic parameter. The
possibilistic approach processes the membership value of a training
sample in a cluster representing the typicality of the sample in the
cluster, or the possibility of the sample belonging to the cluster. Each
training sample is classified to only one cluster at a time rather than to
all the clusters simultaneously. Therefore, a reasonable initialization is
required in order to letJPCM converge to the global minimum.

If a training sample is classified to a suitable cluster, membership
is a better constraint for which the training sample is the closest to
this cluster. In the other words, typicality is an important factor for
unburdening the undesirable effects of outliers to compute the cluster
centers. In accordance with [19], typicality is related to the mode of
the cluster and can be calculated based on alln training samples. Thus
an objective function in the FPCM, depending on both of memberships
and typicalities, can be defined as

JFPCM =
1

2

n

x=1

c

i=1

�
m
x;i + t

�
x;i kzx �$ik

2 (3)

where memberships, typicalities, and centroids are

�x;i =

c

`=1

(kzx �$ik
2)1=(m�1)

(kzx �$`k2)1=(m�1)

�1

; x = 1; 2; . . . ; n

i = 1; 2; . . . ; c (4)

tx;i =

n

y=1

(kzx �$ik
2)1=(��1)

(kzy �$ik2)1=(��1)

�1

; y = 1; 2; . . . ; n

i = 1; 2; . . . ; c (5)

and

$i =
1

n
y=1 �my;i + t

�
y;i

n

x=1

�
m
x;i + t

�
x;i zx: (6)

Fig. 1. Architecture of the neuron(x; i) in a 2-D FPHN.

In the FPCM, membership�x;i is a function of training samplezx with
all c cluster centers while the typicalitytx;i is a function of training
samplezx with cluster center$i. Thus typicalitytx;i does just depend
on the location of the cluster center$i.

III. FUZZY-POSSIBILISTIC HOPFIELDNEURAL NETWORK

The Hopfield-model neural networks [23], [24] have been studied
extensively. The features of this network are simple and have clear
potential for parallel implementation. In order to improve the perfor-
mance in the application of optimal problems, modified Hopfield net-
works [7], [8], [16], [25]–[27] have been proposed. Linet al. [7], [8],
[16], [26] proposed different fuzzy Hopfield networks to the applica-
tions of clustering problem and medical image segmentation. Chenget
al. [27] presented a possibilistic Hopfield network on CT brain hem-
orrhage image segmentation. These modified Hopfield networks are
either based on fuzzy reasoning or possibilistic learning. In [7], [8],
[16], [26], and [27], each neuron occupies only one state which is
updated with a membership grade or typicality degree. For the pur-
pose of solving the noise sensitivity fault of fuzzy reasoning and the
simultaneous clustering problem of possibilistic learning, the FPCM
strategy is embedded into Hopfield network to construct the FPHN in
this paper. Instead of updating and memorizing the centroids for iter-
atively training samples in the FPCM, the neuron states and synaptic
weights are updated in the modified Hofield net. Finally, the centroids
are calculated using the training samples and neuron states when the
energy is converged. In the FPHN, shown in Fig. 1, each neuron occu-
pies two states named membership state based on allc cluster centers
and typicality state based on alln training samples individually. In the
learning process, the membership and typicality states are updated iter-
atively until the modified energy is converged. Thus the total weighed
input for neuron(x; i) and Lyapunov energy function in the two-di-
mensional FPHN can be modified as

Netx;i = zx �

n

y=1

Wx;i;y;izy

2

+ Ix;i +Kx;i (7)

and
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2

�

n

x=1

c

i=1

Ix;i�
m
x;i +Kx;it

�
x;i (8)

whereWx;i;y;i is the weighed input vector received from the neuron
(y; i) at neuron(x; i); m and � are fuzzification and typicality
parameters,�x;i and tx;i are membership and typicality states at
neuron(x; i), andIx;i;Kx;i are input-vector biases for membership
and typicality states at neuron(x; i) respectively. The minimization
of (8) is under the constraintsm > 1; � > 1; 0 � �x;i; tx;i � 1,
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and c
i=1 �x;i = 1 8x; and n

x=1 tx;i = 1 8i. The network reaches
an equilibrium state when the modified Lyapunov energy function is
minimized. The objective function for clustering problem in the 2-D
FPHN is defined as follows:

JFPHN =
A

2

n

x=1

c

i=1

�
m
x;i + t

�
x;i

� zx �

n

y=1

1
n
h=1 �mh;i + t

�
h;i

zy �
m
y;i + t

�
y;i

2

+
B

2

n

x=1

c

i=1

(�x;i + tx;i) � n� c

2

(9)

whereJFPHN is the objective function that accounts for the energies
of all training samples in the same class, andzx; zy are the training
vectors at rowsx andy in the FPHN, respectively.

The first term in (9) defines the Euclidean distance between the
training samples in a cluster and that cluster’s centers overc clus-
ters with membership grade and typicality degree. The second term
guarantees thatn training samples inZ are distributed among these
c clusters. More specifically, the second term (the constrained term),
imposes constraints on the objective function, and the first term min-
imizes the intra-class Euclidean distance from training vectors to the
cluster centers.

All the neurons in the same row compete with one another to deter-
mine the training sample represented by that row belongs to all clus-
ters with membership grades and typicality degrees. In other words, the
summation of the membership states in the same row equals to one and
the summation of the typicality states in the same column also equals
to one in the FPHN. That is, the total sum of membership states in all
n rows equaln and the total sum of typicality states in allc columns
equalc. This assures that alln samples will be classified intoc classes.
The objective function in this network can be further simplified as

JFPHN =
1

2

n

x=1

c

i=1

�
m
x;i + t

�
x;i

� zx �

n

y=1

�my;i + t
�
y;i

n
h=1 �mh;i + t

�
h;i

zy

2

: (10)

By using (10), the minimization ofJFPHN is greatly simplified, since
(10) contains only one term, the need to find the weighting factorsA

andB are removed. Comparing (10) with the modified Lyapunov func-
tion (8), the synaptic interconnection weights and the bias inputs for the
proposed FPHN can be obtained as

Wx;i;y;i =
�my;i + t

�
y;i

n
h=1 �mh;i + t

�
h;i

(11)

Ix;i = 0 (12)

and

Kx;i = 0: (13)

By introducing (11), (12), and (13) into (7), the input of neuron(x; i)
can be expressed as

Netx;i = zx �

n

y=1

1
n
h=1 �mh;i + t

�
h;i

zy �
m
y;i + t

�
y;i

2

: (14)

Fig. 2. Flowchart of multispectral images classification using the FPHN.

Consequently, the neuron states at neuron(x; i) in the FPHN with
FPCM reasoning are given by

�x;i =

c

j=1

Netx;i
Netx;j

1=m�1 �1

; for all i (15)

and

tx;i =

n

y=1

Netx;i
Nety;i

1=��1 �1

; for all x: (16)

Directly mapping training vectors to the 2-D neuron array, the FPHN
is trained to update all neuron states in order to classify the input vec-
tors into feasible clusters when the defined energy function converges
to near global minimum. The detail process of the FPHN is shown in
Fig. 2, in which parametersiter andmaxiare number of iterations and
maximum value of iteration respectively.

IV. EXPERIMENTAL RESULTS

To show the classification performance of the FPHN, a data set
proposed by Palet al. [19] and two sets of al multispectral images are
used for simulation in an IBM Pentium II 166 MHz computer. The
data set, shown in Fig. 3, consists of 12 points on a 2-D coordinate
given in Table I. Initially, the states of neurons�x;i and tx;i are
randomly set between 0 and 1. These two states for all neurons are
updated iteratively to stabilize solutions as the defined Lyapunov
energy function converges to a near-global minimum value. The
cluster centers associated the data set shown in Table I withc = 2 are
C1 = [C11; C12] = [(�3:1947; 0:3138); (3:1946; 0:3134)];C2 =
[C21; C22] = [(�3:2080;0:3053); (3:2078;0:3051)], and C3 =
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Fig. 3. Coordinates of the data set.

TABLE I
MEMBERSHIPGRADES AND TYPICALITY DEGREES FORFCM AND FPHN

TABLE II
INDICES OF THE12 POINTS CORRESPONDING TO ASORT ON t AND t

[C31; C32] = [(�3:2045; 0:2702); (3:2048; 0:2657)] generated by
FCM, FHNN and FPHN respectively. The centroids were obtained

Fig. 4. Multispectral MR head images with normal physiology: (a)TR =
TE = 2500ms=25ms; (b)TR =TE = 1500ms=50ms; (c)TR =TE =

500ms=11:9 ms; (d) TR =TE = 2500ms=75 ms; (e)TR =TE =

2500ms=100 ms.

using FCM areC4 = [C41; C42] = [(�3:2000;0); (3:2001; 0)]
if point 12 was removed and clustering the remained 11
points into 2 classes. The Euclidean distances between cen-
troids C4 and C1;C2;C3 are dis41 = distance(CCC4;CCC1) =
[0:3138;0:3134];dis42 = distance(CCC4;CCC2) = [0:3054; 0:3052]
and dis43 = distance(CCC4;CCC3) = [0:2702; 0:2657] individually.
From these results, the centroids resulted from FPHN are more
weakly influenced by point 12 than FCM and FHNN. Table II
shows the indices of the 12 points sorted by typicality values in
each cluster. Same as the results in the FPCM, points 1–5 are most
typical to cluster 1 and points 7–11 are also most typical to cluster
2. Point 6 has equal typicality values to both clusters. Although
point 12 also occupies equal typicality values to both clusters, it is
an order of magnitude smaller than the typicality value for point 6
that means point 6 belongs to both clusters with proper grades more
strongly than point 12. This also means that the FPHN can prune
outliers from the data to reduce the effects of noise.

The second example is multispectral image classification in MR
head images of a normal physiology shown in Fig. 4. Due to the
noise in acquisition and of the partial volume effects from the low
resolution of sensors, the uncertainty is widely present in medical
images. The unsupervised approaches based on fuzzy clustering
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Fig. 5. Classified images in channel 5 withTR =TE = 2500ms=100 ms:
pictures (a) GM, (c) WM, and (e) CSF are classified by FPHN; (b) GM, (d) WM,
and (f) CSF are classified using FHNN, respectively.

techniques are particularly suitable for handling a decision making
process in classification of multi-modal medical images. These real
medical images in Figs. 4 and 9 are acquired withT2-weighted
sequences for channel imagesCH = 1; 2; 4, and5 andT1-weighted
signal for channel imageCH = 3 respectively. The acquisition
parameters with different repetition time (TR) and echo time (TE)
are TR1=TE1 = 2500 ms=25 ms, TR2=TE2 = 1500 ms=50
ms, TR3=TE3 = 500 ms=11:9 ms, TR4=TE4 = 2500 ms=75
ms, and TR5=TE5 = 2500 ms=100 ms for Fig. 4; and
TR1=TE1 = 2500 ms=25 ms, TR2=TE2 = 2500 ms=50 ms,
TR3=TE3 = 500 ms=20 ms,TR4=TE4 = 2500 ms=75 ms, and
TR5=TE5 = 2500 ms=100 ms for Fig. 9 individually. Therefore, a
training vector consisting of 5 components is directly fed into a row
of the FPHN.

In Fig. 5, different regions were classified by the FPHN and FHNN
from Fig. 4 such as background (BKG), gray matter (GM), white matter
(WM), and cerebral spinal fluid (CSF), respectively. The classified tis-
sues generated by FPHN and FHNN are shown in Fig. 5. In order
to compare the performance of the proposed FPHN with HCM and
FHNN, the computation time and number of iterations needed to clas-
sify one MR-image using the interpreter language of MATLAB are dis-
played in Table III. In the results, the HCM needs less iterations and
computation time than the other two fuzzy approaches in average. On

TABLE III
AVERAGE ITERATIONS AND COMPUTATION TIME NEEDED TOCLASSIFY ONE

MR-IMAGE FOR HCM, FHNN AND THE PROPOSEDFPHN

TABLE IV
UNIFORMITY MEASURES INVARIANT CHANNELS USING THE DIFFERENT

METHODS FORFIG. 4

the other hand, the FHNN requires more iterations and computation
time than the proposed FPHN although the mathematic structure of
FPHN is more complex.

The uniformity measure adopted from Levine and Nazif [28] is used
to show the classification performance for the classified regions com-
pared the proposed FPHN with HCM and FHNN in this paper. In digital
images, the uniformity of a feature over a region is inversely propor-
tional to the variance of the value of that feature evaluated at every pixel
belonging to that region. For a given-segmented image, the uniformity
measureUM� is given by

UM� = 1�
R 2�

pi�
2
i

M
(17)

whereRi is the segmented regioni; Pi is the weight associated with
the contribution of regionRi to the measure. The value is computed as

M =
R 2�

pi �

(fmax � fmin)
2

2
(18)

with fmax = maximum gray level andfmin = minimum gray level in
the image respectively. IfAi is the total number of pixels in regionRi

for classi, the variance for gray levels inRi is defined as

�i =
(x;y)2R

[f(x; y)� �fi]
2

Ai

(19)

wheref(x; y) represents the gray level of pixel(x; y); �fi is the av-
erage gray level in regionRi. The classification performance is more
promising as the uniformity measure is closer to 1 for a segmented
image. Although Fig. 5 almost displays the similar classified results
in subjective observation, the uniformity measures shown in Table IV
indicates more promising results can be obtained by the FPHN. From
Tables III and IV, the FPHN can obtain more uniform classification
than the HCM algorithm and obtain better performance than FHNN.
Additionally, the better uniformity measure can be obtained with more
regions than those yielded by fewer regions.

In order to emphasize the classification ability of the proposed
FPHN, several test phantoms were constructed for simulation. Every
test phantom was made up of six overlapping ellipses. Each ellipse
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TABLE V
SIMULATING CLUSTER CENTERS OFDIFFERENTOBJECTS FORVARIANT

CHANNELS IN TEST PHANTONS WHICH ARE THE AVERAGE VALUES

ESTIMATED FROM TEN MULTISPECTRAL MR HEAD IMAGES WITH NORMAL

PHYSIOLOGY USING THE SAME PARAMETERS IN FIG. 4

Fig. 6. Test phantoms for simulating different objects (BKG, WM, GM, and
CSF) in multispectal image.

represents one structural area of tissue. From periphery to the center,
they were the background (BKG, 41 500 pixels), gray matter (GM,
10 270 pixels), white matter (WM, 10 116 pixels), and cerebrospinal
fluid (CSF, 3650 pixels), respectively. The cluster centers for different
channels in test phantoms, in Table V, are the average values estimated
from ten sets of multispectral MR head images with normal physi-
ology using the same parameters in Fig. 4. The computer-generated
images to simulate variant channels are shown in Fig. 6. In addition,
a Gaussian-distribution noise with gray levels ranging from�� to+�

Fig. 7. Test phantoms for simulating different objects (BKG, WM, GM, and
CSF) in multispectal image with adding Gaussian noise� = �30.

TABLE VI
SEGMENTATION PERFORMANCES INCORRECTDETECTING PIXELS FOR FHNN

AND FPHN METHODSUSING THESIMULATED IMAGE WITH � = �25

TABLE VII
SEGMENTATION PERFORMANCES INCORRECTDETECTING PIXELS FOR FHNN

AND FPHN METHODSUSING THESIMULATED IMAGE WITH � = �30
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TABLE VIII
SEGMENTATION PERFORMANCES INCORRECTDETECTING PIXELS FOR FHNN

AND FPHN METHODSUSING THESIMULATED IMAGE WITH � = �50

TABLE IX
SEGMENTATION PERFORMANCES INCORRECTDETECTING PIXELS FOR FHNN

AND FPHN METHODSUSING THESIMULATED IMAGE WITH � = �80

Fig. 8. Classified images with variant Gaussian noises: pictures (a)� = �10,
(c) � = �30, and (e)� = �80 are classified by FPHN; (b)� = �10, (d)
� = �30, and (f)� = �80 are classified using FHNN respectively.

Fig. 9. Multispectral MR head images with cerebral infarction: (a)TR =
TE = 2500ms=25ms; (b)TR =TE = 2500ms=50ms; (c)TR =TE =

500ms=20 ms; (d) TR =TE = 2500ms=75 ms; (e) TR =TE =

2500ms=100 ms.

was added to test phantoms. The test phantoms with Gaussian -distribu-
tion noise� = �30 for different channels are shown in Fig. 7. The clas-
sified results of test phantoms with variant noises� = �25;�30;�50
and�80 are displayed in Tables VI, VII, VIII and IX respectively. The
simulated structural areas of tissues can be completely and correctly
classified when the Gaussian noise isj�j � 10 for both FPHN and
FHNN. In these Tables, the proposed FPHN can obtain more promising
classification than the FHNN. For example, 9372 pixels were detected
with a 92.6% correct rate using FHNN while 9422 pixels were clas-
sified with 93.1% correct rate using the FPHN with� = �25. The
total misclassified pixels for the test phantoms with� = �25 were
1367 and 1349 using FHNN and the proposed FPHN, respectively. The
better classification rates can be clearly displayed by the FPHN than
those yielded by the FHNN in more noises. The classified regions in
different images for variant noises are shown in Fig. 8.

The fourth example is multispectral images classification in MR
head images of a patient diagnosed with cerebral infarction shown in
Fig. 9. Fig. 10 shows the five regions BKG, GM, WM, CSF, and cere-
bral infarction (CI) classified by the FPHN respectively. After a post
processing with median filtering, the detail of an abnormal region with
cerebral infarction is displayed in of Fig. 10(e).
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Fig. 10. Classified images using the proposed FPHN in channel 2 with
TR =TE = 2500ms=50 ms: (a) GM; (b) WM; (c) CSF; (d) CI; and (e) CI
after median filter.

V. DISCUSSION ANDCONCLUSIONS

A modified Hopfield-net model called fuzzy possibilistic Hopfield
net (FPHN) embedded fuzzy possibilistcc-means strategy with 2
neuron states, membership state and typicality state, is proposed to
the classification of multispectral images. From the simulations, the
proposed FPHN seems to solve the noise sensitivity fault of fuzzy
c-means and overcoming the simultaneous clustering problem of
possibilisticc-means strategy. Therefore, the FPHN can prune outliers
from the data to reduce the effects of noise. From the experimental
results, the FPHN can classify more suitable regions than HCM and
FHNN methods in the application of multispectral images and the
generated phantoms classification. Moreover, the designed FPHN
neural-network-based approach with a fuzzy reasoning has simple
features and clear potential for optimal problems.
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